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Abstract

The collection of papers in this journal supplement provides insight into the association of various
covariates with concentrations of biochemical indicators of diet and nutrition (biomarkers), beyond
age, race and sex using linear regression. We studied 10 specific sociodemographic and lifestyle
covariates in combination with 29 biomarkers from NHANES 2003-2006 for persons 220 y. The
covariates were organized into 2 chunks, sociodemographic (age, sex, race-ethnicity, education,
and income) and lifestyle (dietary supplement use, smoking, alcohol consumption, BMI, and
physical activity) and fit in hierarchical fashion using each chunk or set of related variables to
determine how covariates, jointly, are related to biomarker concentrations. In contrast to many
regression modeling applications, all variables were retained in a full regression model regardless
of statistical significance to preserve the interpretation of the statistical properties of beta
coefficients, A-values and CI, and to keep the interpretation consistent across a set of biomarkers.
The variables were pre-selected prior to data analysis and the data analysis plan was designed at
the outset to minimize the reporting of false positive findings by limiting the amount of
preliminary hypothesis testing. While we generally found that demographic differences seen in
biomarkers were over- or under-estimated when ignoring other key covariates, the demographic
differences generally remained statistically significant after adjusting for sociodemographic and
lifestyle variables. These papers are intended to provide a foundation to researchers to help them
generate hypotheses for future studies or data analyses and/or develop predictive regression
models using the wealth of NHANES data.

INTRODUCTION

A vast amount of data is collected on each sampled person in the continuous NHANES
survey, providing a unique opportunity to assess and describe the nutritional status of the US
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population. However, NHANES cannot assess cause and effect. The variables collected in
observational studies, such as NHANES, have not been experimentally manipulated and/or
randomly assigned. In this setting any causal pathway becomes obfuscated and differences
may provide little insight into the cause and effect. Observational studies, however, can still
provide an approximate description of patterns in the data and form a basis to estimate
associations and perform hypothesis testing after controlling simultaneously for many
variables, though estimates may always be biased due to residual or unmeasured
confounding.

Application of any statistical method first requires a well-formulated problem within the
scope of the study design’s ability to provide solutions. Adhering to the tenets of the
scientific method should precede any statistical analysis. While the basic assumptions of the
statistical method remain important, uncritical application and/or repeated application of a
statistical modeling analysis without a well-formulated plan can simply capitalize on the
random variation and lead to a model that has little utility for prediction, statistical
estimation or testing, and rather leads to false positive findings (1, 2, 3).

One of the hallmarks of the scientific method is a “feedback loop” between theory and
practice as we further refine our hypotheses after accumulating new facts (4). NHANES can
be used to inform the feedback loop by providing a description of the nutritional status of
the US population by various demographic, socioeconomic, health, and risk markers; and
with its continuous design, the snapshots reflect changes in the nutritional status of the US
population. This information can be used to develop modified hypotheses to further
understand the reasons for observed differences and to identify important factors to consider
when designing new experimental studies. The collection of papers in this journal
supplement provides a systematic description of various biochemical indicators of diet and
nutrition using the same sets of pre-defined covariates. These go beyond age, sex, and race-
ethnicity, which have already been described in the CDC’s Second National Report on
Biochemical Indicators of Diet and Nutrition in the US Population (5). The main objective
of this paper is to discuss the statistical strategy used to analyze the 10 selected
sociodemographic and lifestyle correlates of nutritional biomarker concentrations belonging
to different classes of nutrients and the reasons for limiting data-driven decisions commonly
applied in many other NHANES analyses. A secondary objective was to summarize
parameters from the model results presented in the accompanying papers to identify any
general patterns.

SUBJECTS AND METHODS

Biomarkers

The dependent variables in the papers in this journal supplement include biomarkers of diet
and nutrition measured in adults =20 y who provided a biological specimen during their
examination at the mobile examination center in NHANES 2003-2006. Some biomarkers
were only available for a subset of the full sample or for only 2 of the 4 survey years, i.e. 1
cycle (Table 1). It is known that a log transformation of data derived from biological assays
can often be used to make the distribution of the data approximately normal. Previous
analysis of NHANES biomarker data (5, 6) used simple graphical methods such as normal
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probability plots and histograms to confirm the adequacy of a natural log transformation for
the biomarkers presented. The natural log transformation was used for all the biomarkers
considered in this study, with the exception of vitamin C, 25-hydroxyvitamin D, and body
iron. The use of the logarithm in linear regression provides a straightforward interpretation
of the response that is not in the units of the original response variable, but as a percent
change. Thus, one can compute the percent change in response at 2 different values of a
covariate, while holding all others constant (see Supplemental Text 1). In addition, with the
aid of the Taylor series approximation, In (x+1) ~ x for small x, the beta coefficient
(multiplied by 100) from the multiple linear regression of a natural log transformed response
can be approximately interpreted as the percent change in the response for a 1 unit change in
the covariate (assuming the covariate has not been transformed), while holding all other
variables constant (see Supplemental Text 2 for an example). Similarly, if both the response
and the covariate have been transformed by the natural log, one can approximately interpret
the beta coefficient as the percent change in the response for every 1 percent change in the
covariate.

Composite variables are often used in public health messaging and the scientific literature.
For fat soluble biomarkers, the following composite variables were created by summing a
group of chemically related compounds: carotenes, xanthophylls, saturated,
monounsaturated, polyunsaturated, and total fatty acids. These composite variables were
only calculated for persons who had non-missing values across all corresponding
biomarkers. Therefore, a small number of values were missing for these composite variables
relative to the individual biomarkers (see Supplemental Table 1).

Ten specific sociodemographic and lifestyle factors were selected as covariates based on the
information available in NHANES and on evidence in the literature that these variables may
be related to nutritional biomarkers. The sociodemographic variables included age, sex,
race-ethnicity, education level, and family poverty income ratio (PIR%). For bivariate
analyses, we categorized the sociodemographic variables as follows: age (20-39 y, 40-59 y,
and =60 y); race-ethnicity (Mexican American [MA], non-Hispanic black [NHB], and non-
Hispanic white [NHW]); education (<high school, high school, and >high school); PIR was
calculated by dividing total family income by the poverty guidelines adjusted for family size
at year of interview (7) and categorized as low (0-1.85), medium (>1.85-3.5), or high
(>3.5), using the 1.85 cutoff that corresponds to income-eligible for the Special
Supplemental Program for Women, Infants, and Children (8). The lifestyle factors included
dietary supplement use, smoking, alcohol consumption, BMI, and physical activity level.
Participants were categorized as “smokers” if their serum cotinine concentration was >10
Hg/L (9). For descriptive tables, BMI (kg/m2) was categorized using WHO guidelines for
underweight (<18.5), normal (18.5-<25), overweight (25-<30) and obese (=30) (10).
Assessment of supplement use was based on whether the participant indicated any use of
dietary supplements in last 30 d.

4 Abbreviations used: MA, Mexican American; MET, metabolic equivalent task; NHB, non-Hispanic black; NHW, non-Hispanic
white; PIR, poverty income ratio
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The physical activity variable was constructed using files that provide detailed information
about specific leisure time physical activities (11). Participants were asked to recall the
frequency, duration, type and intensity of each leisure time physical activity for which they
engaged for more than 10 min during the past 30 d. To construct a physical activity variable
that accounts for energy expenditure, the metabolic equivalent task (MET) score for each
leisure time physical activity was multiplied by the frequency and duration (min). This
variable was then summed for each participant, divided by 30 and then multiplied by 7 to
obtain total MET-min/wk. For the descriptive tables, this variable was categorized into 4
groups: no reported leisure time physical activity, 0—<500, 500-<1000, and >1000 MET-
min/wk (12).

Average daily alcohol consumption was derived from the alcohol use questionnaire as:
[(quantity x frequency) / 365.25]. Respondents were asked about their alcohol use where a
drink was defined as a 12 oz. beer, a 5 oz. glass of wine, or 1.5 oz of liquor. This is
equivalent to a “standard” drink in the United States, which contains 0.6 US fluid oz (18
mL) of alcohol and corresponds to 14.2 g of ethanol. Persons who reported having less than
12 drinks of any type of alcoholic beverage in the past year (or lifetime) were considered
nondrinkers. For descriptive purposes, alcohol consumption was categorized in the following
groups: no drinks, <1, 1-<2, and =2 drinks/d.

In a few cases additional variables were added to the full model (sociodemographic and
lifestyle factors) to provide important adjustments that might be expected for certain
biomarkers. For the urine biomarkers, urine creatinine concentration was included as a
covariate to adjust for the dilution of the spot urine. For fat-soluble nutrients, total
cholesterol and prescription use of lipid-altering drugs was included because some fat-
soluble nutrients are transported in the plasma by lipids and to adjust for drug-related
changes in fat absorption and/or lipid metabolism. For 25-hydroxyvitamin D, season and
latitude were included as proxies to adjust for sun exposure, which has been shown to have
an impact on vitamin D status.

The mathematical form of the continuous covariates (age, PIR, BMI, physical activity, and
alcohol consumption) was assumed to be linear in the regression model. A log
transformation for BMI, alcohol consumption, and physical activity was applied to these
covariates; although not a necessary assumption, linear regression is more robust when the
independent variables have an approximately normal distribution (13). To deal with 0 in
alcohol consumption and physical activity data, a In(x+1) transformation was applied (Table
2).

Statistical analyses that apply to accompanying papers in this supplement

The analysis plan entailed computing Spearman correlations to describe bivariate
associations between each biomarker and selected continuous variables. Bivariate
associations between each biomarker and categorical variables were described with
geometric means (or arithmetic means where appropriate) and 95% CI across the categories.
The means were compared across the categories on the basis of Wald F tests (tests whether
at least 1 of the means across the categories is significantly different from the others).
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Geometric or arithmetic means were not presented if the minimum sample size of 42 was
not reached (assumed average design effect of 1.4 multiplied by 30) (14).

At the outset, we identified 10 different covariates for 29 different responses (biomarkers)
and decided to keep all variables in a full regression model regardless of statistical
significance. Covariates were arranged into 2 sets or “chunks” of sociodemographic factors
and lifestyle factors. We tested these covariates in a hierarchical, chunk-wise fashion such
that each chunk or set of related variables was tested simultaneously (15, 16). The influence
of each chunk was assessed by a Satterthwaite adjusted F chunk test, which tests whether at
least 1 of the model coefficients for the set of variables in the chunk is significantly different
from 0. Wald F test statistics were used to test whether any single coefficient was
significantly different from 0, if the overall chunk test was statistically significant. In
addition to simple linear regression (model 1), multiple regression models were considered
for each biomarker: a multiple linear regression model with the sociodemographic variables
(model 2), and a multiple linear regression model with both the sociodemographic and
lifestyle variables in the regression (model 3). For urine biomarkers, urine creatinine
concentration was added to model 3 (model 4). For fat-soluble nutrients, lipid-related factors
were added to model 3 (model 4) or sun exposure factors were added to model 3 for 250HD
only (model 5). Simple linear regression was used to provide an estimate of the unadjusted
beta coefficient and a sample coefficient of determination (/9. Assuming the model is not
misspecified, confounding can be assessed by the change in estimate between the adjusted
and unadjusted beta coefficients from these models (16). We assessed confounding in
specific variables by noting the change in the befa coefficients from the simple linear
regression (model 1) to a larger multiple linear regression model (models 2-5). The
magnitude of change that constitutes confounding can vary by subject matter. In some
situations, a relatively small change might be meaningful; whereas in other instances, a
larger change might not be clinically meaningful. A rule of thumb is that any change in the
beta coefficient greater than 10-20% may be considered confounding (16).

A factor that limited the number of a priori variables to consider was related to the available
degrees of freedom (d7). While thousands of people are sampled in any cycle of NHANES,
the effective dfavailable is based on the number of primary sampling units minus the
number of strata (17). In NHANES this amounts to approximately 15 dfper cycle. Many
preliminary analytic decisions were made to ensure we had sufficient dfto include all pre-
selected variables simultaneously in a full model for each of the 29 analytes. Because several
analytes only had 1 cycle of data released, we limited ourselves to a maximum of 15 df. In
addition, we decided at the outset to exclude the consideration of higher-order interactions.
Unless an interaction is driven by a known biological phenomenon, a statistically significant
interaction will be difficult to interpret and in a descriptive analysis, such as this one, most
likely represents general lack of model fit (15).

Statistical analyses were carried out using SAS for Windows software version 9.2 (SAS
Institute, Cary, NC) and SAS-callable SUDAAN (SUDAAN Release 10.0, 2008 RTI,
Research Triangle Park, NC) to account for the unequal probability of inclusion,
stratification, and clustering. SUDAAN offers Taylor series linearization to account for the
effect of stratification and clustering on the variance estimates. The weights used depended
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on whether the specimens tested constituted a full or a subsample of all the eligible
participants examined at the MEC and how many survey periods were combined to produce
the estimate (Table 1). P-values < 0.05 were considered statistically significant. Because
SUDAAN v10.0 does not have a correlation procedure, Spearman’s correlations were
computed as the slope of the regression of the standardized ranks for both variables. ~-
values for the Spearman correlation were computed as the maximum A-value of the slope
coefficient of x on y and y on x.

Statistical analyses specific to this paper

RESULTS

We used a row-labeled plot to illustrate the increase in A2 from model 2 (includes
sociodemographic variables) to model 3 (includes both sociodemographic and lifestyle
variables) for all 29 biomarkers. The arrows are sorted in ascending order based on the ”Z
from model 2. Models 2 and 3 are nested and so the model with more covariates (model 3)
will always have a larger /€ than the smaller model (model 2).

To illustrate how controlling for more covariates selectively affects various biomarkers, we
plotted the change in the beta coefficient (multiplied by 100) between model 1 and model 3
for age (for every 1y increase), sex (females vs. males), and race-ethnicity (MA vs. NHW
and NHB vs. NHW) for 20 of the 29 biomarkers using row-labeled plots. The arrow points
in the direction of the change of the value of the befa coefficient from model 1 to model 3.
Of the 29 biomarkers included in the analysis, 20 shared some critical properties that made
them suitable for this comparison: (1) they are based on a natural log transformation
facilitating interpretation and (2) they generalize to the adult population =20 y with no
further restrictions. A beta coefficient of 0, suggests that a change in that covariate produces
no change in the response. To provide information about broad patterns across the
biomarkers for each of the covariates in models 3-4, a summary of the estimated adjusted
percent changes is presented using the beta coefficients.

Among adults 220 y in the non-institutionalized, civilian US population in 2003-2006, 23%
were =60 y, 52% were female, 72% were non-Hispanic white, 56% had more than a high
school education, 43% were considered high income based on PIR, 29% had evidence of
current smoking, 29% reported not having any alcohol consumption during the past year or
ever, 54% reported taking dietary supplements, 33% were considered obese, and 32%
reported no leisure time physical activities during the past 30 d that lasted more than 10 min
(Table 3). As different biomarkers were analyzed in different NHANES survey periods
and/or subsamples, we verified that this descriptive information was not qualitatively
impacted by the set of NHANES weights used (see Supplemental Table 2).

It is interesting to note some patterns across the analytes when comparing the change in 72
from model 2 to model 3 (Fig. 1). Urine phytoestrogens showed the smallest increase in /2
after adding the lifestyle chunk; whereas both acrylamide and glycidamide showed the
largest increases. Plasma homocysteine stood out as the analyte for which the
sociodemographic variables explained most of the variability, yet with little added value
from the lifestyle factors.
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To illustrate how controlling for more covariates affects beta coefficients for demographic
variables, we looked at the changes in beta coefficients for twenty analytes that use a natural
log transformation and allow simplified interpretation of values (Fig. 2). Consider serum
folate and the beta coefficient for sex with males as the reference. The beta coefficient from
model 1 is 0.129 (95% CI: 0.104 — 0.154), while the beta coefficient from model 3 is 0.057
(95% CI: 0.031 - 0.083). Using the approximate interpretation, this suggests that females
have approximately 12.9% (0.120 x 100) higher serum folate concentrations than males
before controlling for covariates and 5.7% (0.057 x 100) after controlling for age, race-
ethnicity, PIR, education level, smoking, alcohol consumption, BMI, physical activity, and
supplement use. The change in the beta coefficient for sex and serum folate from model 1 to
model 3 reveals a 56% change in the beta coefficient, which may imply that at least 1 of the
variables in model 3 or a combination of them may have confounded the unadjusted estimate
of model 1. On the other hand, some of the biomarkers reveal a qualitative change in the
interpretation of the beta coefficient when the value changes from negative to positive or
vice versa. Consider sex and acrylamide as an example. The befa coefficient for sex (with
males as the reference) changes from -0.112 (95% CI: -0.149 — —-0.0743) in model 1 to
0.0356 (95% CI: —0.0228 — 0.0940) in model 3. In other words, prior to any adjustment,
acrylamide was approximately 11.2% lower in females compared to males. After adjusting,
acrylamide was approximately 3.56% higher in females compared to males; in addition, the
variable (sex) is no longer statistically significant after controlling for the remaining
sociodemographic and lifestyle variables. On the other hand, for gylcidamide the unadjusted
(model 1) and the sociodemographic adjusted (model 2) beta coefficient for sex are not
significant, but once lifestyle factors are controlled for it reveals a statistically significant
difference between females and males, such that females have approximately 8.7% higher
levels of glycidamide than males. The reason for the sex gap cannot be explained by
differences among the remaining variables, like smoking status, and may suggest other
variables that have not been controlled for in the model such as genetics and other sex-
specific effects that modify acrylamide metabolism.

To provide information about broad patterns across the biomarkers for each of the covariates
in the full regression model, a summary of the estimated adjusted changes is presented
(Table 4). While there are a few exceptions, the statistically significant associations between
the biomarkers and age, sex, or race-ethnicity remained after adjusting for all the pre-
selected covariates. In case of phytoestrogens, non-significant associations between age, sex
or race-ethnicity became statistically significant or vice versa after adjusting for the pre-
selected variables. Among the sociodemographic factors, education level had the fewest
statistically significant associations among the biomarkers (5/29); age on the other hand was
statistically significant for 24 and race-ethnicity for 22 (NHB vs. NHW) and 18 (MA vs.
NHW) of the 29 biomarkers. Among these significant associations, age was most often
positively associated, while race (NHB vs. NHW) was generally negatively associated with
the biomarkers (Fig. 2, Table 4). The exceptions for age included pyridoxal-5’-phosphate,
carotenes, 25-hydroxyvitamin D, and acrylamide hemoglobin adduct; the exceptions for
race-ethnicity (NHB vs. NHW) included total cobalamin, vitamin C, carotenes,
xanthophylls, soluble transferrin receptor, and glycidamide hemoglobin adduct. Both levels
of comparison for race-ethnicity, NHB vs. NHW and MA vs. NHW, were simultaneously
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statistically significant for 15 biomarkers; for 8 of the biomarkers NHW had the highest
concentrations, for 3 biomarkers (total cobalamin, vitamin C and xanthophyll) NHW had the
lowest concentrations. The remaining 4 biomarkers had associations for each level in
opposite directions. Among the lifestyle factors, physical activity had the fewest statistically
significant associations among the biomarkers (12 of the 29); whereas, BMI was statistically
significant for 20 and smoking status for 19 of the 29 biomarkers. Out of the 15 biomarkers
for which both smoking and BMI were statistically significant, the association was in the
same direction for 12 (exceptions: RBC folate, soluble transferrin receptor, and acrylamide
hemoglobin adduct). Similarly, out of the 10 times both smoking and alcohol consumption
were statistically significant, the direction of the association was in the same direction for 8
(exceptions: pyridoxal-5’-phosphate and glycidamide hemoglobin adduct). The magnitude
of the estimated change varied among the 16 statistically significant changes for supplement
use; however, all the associations suggested increases in biomarker concentrations among
supplement users, except for methylmalonic acid, total homocysteine, and acrylamide
hemoglobin adduct. Supplement use was not significantly associated with any of the
phytoestrogens and most fatty acids.

DISCUSSION

In developing a regression plan to assess the joint impact of 10 specific sociodemographic
and lifestyle covariates for each of 29 biomarkers from NHANES 2003-2006 we tried to
avoid some statistical practices that have been shown to capitalize on random variation such
as repeated significance testing, data driven selection of optimal cut points for quantitative
variables, automatic model selection approaches, and using the same data more than once to
develop a regression model. Derksen and Keselman (18) showed through simulation, that the
final model selected from stepwise selection included less than half of the actual number of
real or true predictors; in addition, between 20-75% of the findings represented noise in the
final model. Freedman (19) demonstrated through simulation and asymptotic theory that
screening variables in a full regression model based on statistical significance followed by
eliminating those that are not statistically significant could lead to models with high 72
despite the fact that none of the covariates are truly related to the response. While the RZ
may not be the primary statistic of interest, the implication of an inflated /< is a small mean
square error leading to inflated test-statistics for the beta coefficients and hence P-values that
are more likely to reject the null hypothesis of no association. Another practice that we
chose to avoid in this data analysis was to use the response data to determine the form of a
continuous covariate in a regression model. This practice has been associated with an
inflation of type | error when preliminary tests for non-linearity are used (20) and can lead to
exaggeration of effect sizes, and smaller P-values (21). Recognizing there is a penalty
associated with data mining (22), we decided in advance how to spend the available dfand
to avoid further model refinement. There is always a tension between bias and simplicity
when developing a model. But one of the primary problems with developing a regression
model using an iterative approach is that by the act of repeated hypothesis testing and data
driven model decisions, one fails to preserve the statistical properties and interpretation of
beta coefficients and standard errors that underlie the frequentist methods so often used in
empirical research (3, 15, 18-23). Additionally, estimates of the standard error from a given
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model account for the sampling variability assuming the model is true. They do not account
for the uncertainty associated with not knowing which model is true. Thus, by capitalizing
on the random variation researchers may develop models that show more agreement with the
sample than with data on the entire population, or any other sample from that population
(24).

This problem in model building has long been recognized and stems from the fact that we
use the same data twice. Chatfield (25) writes “It is indeed strange that we often admit
model uncertainty by searching for the best model but then ignore this uncertainty by
making inferences and predictions as if certain that the best fitting model is actually true.”
The benefits of limiting the number of hypothesis tests by keeping a priori selected variables
in a regression model despite statistical significance include: providing findings that are
more likely to be reproducible, preserving the interpretation of the full model results, and
keeping the interpretation consistent across a set of biomarkers without over-interpreting the
results for any single biomarker.

A key factor in determining the accuracy of the estimate, both its bias and its variance, is
how well confounding has been controlled for in the model (15). Because our model does
not control for all variables that may be important and/or confound the observed
relationship, one must recognize this as a limitation of our analyses and inferences. A more
parsimonious model could be derived for each biomarker by eliminating the variables that
were not statistically significant from each chunk. However, we were more concerned with
minimizing the penalty of data mining, preserving interpretation of the model results, and
limiting the number of false positive associations, so we chose to report the results of the full
model.

While one of the primary advantages of limiting data driven decisions during the model
building process is the preservation of the statistical properties of A-values and confidence
levels, it does not solve the problems associated with model misspecification or error-in-
variable problems i.e., covariate measurement errors. There are many opportunities for
model misspecification in our regression models. For example, the assumption of linearity
between the continuous covariates and the biomarker may not be accurate; variables
included in the model may be measured with error or may be suboptimal in other ways. For
example, the dietary supplement use covariate does not specify which specific kinds of
supplements are being used nor does it differentiate between persons who used supplements
infrequently from persons who used them daily. Many important correlates of the individual
biomarkers considered in our analyses were not included in our modeling approach, such as
specific dietary intake variables. In addition, the type of strategy we employed is not
immune from overfitting. The model could be specified, a priori, as too complex or prone to
numerical instability by including too many covariates for the available gfand/or including
highly correlated covariates.

When analyzing data from observational studies, there are many legitimate reasons to
explore and examine data in advance of creating a regression model; such as, error checking
to confirm the integrity of the data, assessing the size of the sample and types of variables,
checking for possible influential observations or the degree of missing data, or using
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graphical methods to assess basic statistical assumptions (2). A data analysis plan could be
developed having full access to all the variables except the outcome of interest with limited
penalty (26). In addition, in some situations there may be ways to mitigate the impact of data
driven decisions either by using methods that adjust for multiple comparisons, by adjusting
the level of significance to account for preliminary testing, and/or by developing models that
account for model uncertainty. However, developing regression models with complex survey
data is challenging for many reasons, one of which is that many of the solutions to address
some of the problems of model uncertainty have not been well-researched or implemented in
commercially available statistical software in the context of complex survey data analysis.
For example, a Bayesian solution to model uncertainty has been described by averaging
across all the competing models and attaching weights of plausibility to each of the models
and thereby incorporating a notion of model uncertainty (25), rather than identifying a single
‘best” model. Other solutions propose cross-validation, shrinkage, penalized maximum
likelihood estimation and resampling methods (15, 22). Regression modeling in complex
surveys can be approached from a super-population inference point of view (17), which can
more easily be adapted to some of the proposed solutions to assess model uncertainty.
However, the publicly released NHANES data sets do not necessarily provide enough
information to account for the sampling design, nor is it obvious how to incorporate all the
design aspects into a model including fixed and/or random effects. In addition, the problem
of causality is difficult in observational studies without very careful consideration of the
causal pathway between exposure and outcome. In order to reasonably establish cause and
effect, statistical methods like propensity scores that try to approximate the design of a
randomized clinical trial (26, 27) are better suited than traditional regression methods.

In an effort to compare the effects of a fixed set of covariates across all biomarkers presented
in the Second National Report on Biochemical Indicators of Diet and Nutrition in the US
Population (5), we chose to forfeit insight into the association between variables unique to
each individual biomarker and rather chose an approach that was consistent across a set of
biomarkers and limited the amount of data mining. The approach taken in these papers
provide a natural way for other researchers to build upon our results by selecting additional
variables for a specific biomarker and adding additional chunks, such as a health status
chunk and/or a dietary intake chunk or the researcher may choose to use a different variable
elimination strategy. In summary, while we do not claim that any of our final models are
‘correct’, we have adhered to the scientific method and “rules of behavior” (28), focusing on
the “feedback loop” (4) between theory and practice, to make decisions before fitting any
regression models. Hence, the purpose of this set of papers is to provide an inductive
foundation for researchers to build on these NHANES analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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R-square (%)

40

Increase in /2 from the multiple linear regression model with the sociodemographic
variables (model 2) to the multiple linear regression model with the sociodemographic and

lifestyle variables (model 3)

Sorted in ascending order based on model 2 R (%); arrows point in the direction of the
increase from model 2 to model 3 /Z: to simplify visual appearance, horizontal lines have

been added.
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250HD, 25-hydroxyvitamin D ; 4PA, 4-pyridoxic acid; B, whole blood; B-12, total
cobalamin; BI, body iron; CAR, carotenes [sum of alpha-carotene, beta-carotene and ci/s-
and trans-lycopene], DAZ, daidzein ; DMA, O-desmethylangolensin; EQU, equol; ETD,
enterodiol; ETL, enterolactone; FER, ferritin; FOL, folate; GEN, genistein; HbAA,
acrylamide hemoglobin adduct; HbGA, glycidamide hemoglobin adduct; MMA,
methylmalonic acid; MUFA, sum of 6 monounsaturated fatty acids; P, plasma; PLP,
pyridoxal-5’-phosphate; PUFA, sum of 11 polyunsaturated fatty acids; S, serum; SFA, sum
of 6 saturated fatty acids; STfR, soluble transferrin receptor; tFA, total fatty acids [sum of 24
fatty acids]; tHcy, total homocysteine; U, urine; ul, urine iodine; VIA, retinol; VIC, ascorbic
acid; VIE, alpha-tocopherol; XAN, xanthophylls [sum of lutein, zeaxanthin and bet&-
cryptoxanthin].
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Figure 2.

Relative change in beta coefficient (multiplied by 100) for sex, age, and race-ethnicity from
the simple linear regression (model 1) to the multiple linear regression model with the
sociodemographic and lifestyle variables (model 3)

A: non-Hispanic black vs. non-Hispanic white; B: Mexican American vs. non-Hispanic
white; C: 1y increase in age; D: females vs. males.

In each panel, beta x 100 (%) can be interpreted as the approximate percent change in the
biomarker for a change in the respective covariate while holding any other variables in the
model constant.

Sorted by class of biomarker (water-soluble, fat-soluble, phytoestrogens, iodine, hemoglobin
adducts of acrylamide); arrows point in the direction of the change of the beta coefficient
from model 1 to model 3; reference line at zero; to simplify visual appearance, horizontal
lines have been added.

4PA, 4-pyridoxic acid; B, whole blood; B-12, total cobalamin; CAR, carotenes [sum of
alpha-carotene, beta-carotene and c¢/s- and frans-lycopene], DAZ, daidzein ; DMA, O-
desmethylangolensin; EQU, equol; ETD, enterodiol; ETL, enterolactone; FOL, folate; GEN,
genistein; HbAA, acrylamide hemoglobin adduct; HbGA, glycidamide hemoglobin adduct;
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MMA, methylmalonic acid; P, plasma; PLP, pyridoxal-5’-phosphate; S, serum; tHcy, total

homocysteine; U, urine; ul, urine iodine; VIA, retinol; VIE, alpha-tocopherol; XAN,
xanthophylls [sum of lutein, zeaxanthin and beta-cryptoxanthin].
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Page 17

Biomarkers of diet and nutrition assessed in the adult US population =20 y during all of part of NHANES

2003-2006
Class Biomarkers! (matrix?) Survey Population Sample
cycle studied
Wiater-soluble  FOL (S), FOL (RBC), B-12 2003-2006 =220y Full
(S), tHey (P), VIC (S)
MMA (P) 2003-2004 =220y Full
PLP (S), 4PA (S) 2005-2006 =220y Full
Fat-soluble VIA (S), VIE (S), 2005-2006 =220y Full
CAR (S), XAN (S)
250HD (S) 2003-2006 =220y Full
SFA (P), MUFA (P), 2003-2004 =220y Fasted subsample
PUFA (P), tFA (P)
Trace elements  FER (S), sTfR (S), BI (S) 2003-2006 Women 20-49y  Full
ul (U) 2003-2006 =220y 1/3 Subsample
Phytoestrogens  GEN (U), DAZ (U), EQU (U), 2003-2006 =20y 1/3 Subsample
DMA (U), ETD (U), ETL (U)
Acrylamide HbAA (B), HbGA (B) 2003-2004 =220y Full

1250HD, 25-hydroxyvitamin D; 4PA, 4-pyridoxic acid; B-12, total cobalamin; BI, body iron; CAR, carotenes [sum of a/pha-carotene, beta-
carotene and cis- and frans-lycopene], DAZ, daidzein; DMA, O-desmethylangolensin; EQU, equol; ETD, enterodiol; ETL, enterolactone; FER,
ferritin; FOL, folate; GEN, genistein; HbAA, acrylamide hemoglobin adduct; HbGA, glycidamide hemoglobin adduct; MMA, methylmalonic acid;
MUFA, sum of 6 monounsaturated fatty acids; PLP, pyridoxal-5’-phosphate; PUFA, sum of 11 polyunsaturated fatty acids; SFA, sum of 6 saturated
fatty acids; sTfR, soluble transferrin receptor; tFA, total fatty acids [sum of 24 fatty acids]; tHcy, total homocysteine; ul, urine iodine; VIA, retinol;
VIC, ascorbic acid; VIE, alpha-tocopherol; XAN, xanthophylls [sum of lutein, zeaxanthin and beta-cryptoxanthin]

ZB, whole blood; P, plasma; S, serum; U, urine
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Mathematical forms of selected covariates for regression models

Chunk Variable Type Transformation

Sociodemographic  Age, y Continuous None
Sex Categorical (2 levels) n/aL
Race-ethnicity Categorical (5 levels)  N/A
Poverty income ratio Continuous None
Education Categorical (2 levels) N/A

Lifestyle Smoking status Categorical (2 levels)  N/A
Alcohol consumptionZarinks/d ~ Continuous In(x+1)
Supplement use Categorical (2 levels)  N/A
BMI (kg/m?) Continuous In
Physical activitySMET-minwk ~ Continuous In(x+1)

JN/A, not applicable

ZAIcohoI consumption: calculated as average daily number of “standard” drinks [(quantity x frequency) / 365.25]; 1 drink ~ 15 g ethanol

Physical activity: calculated as total metabolic equivalent task (MET)-min/wk from self-reported leisure time physical activities
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Table 3

Descriptive information for the adult US population =20 y by sociodemographic and lifestyle factors,
NHANES 2003-2006

Factor Category Estimatel
Age, y 20-39 38.4
40-59 388
260 22.8
Sex Male 48
Female 52
Race-ethnicity Mexican-American 7.9
Non-Hispanic black 11.4
Non-Hispanic white 72
Other Hispanic 35
Other (including multiracial) 5.4
Education <High school 44.2
>High school 55.9
PIRZ Low 29.3
Middle 28
High 27
Smoking status® No 7.2
Yes 28.9
Alcohol consumption4 ~ No drinks 29.4
<1 (not 0) 56.8
1-<2 7.9
22 6.0
Supplement use® No 45.9
Yes 54.1
BMI® Underweight 18
Normal 316
Overweight 334
Obese 333
Physical activity” None reported 32.1
0-<500 24.2
500-<1000 14.0
21000 29.7

'ZVaIues represent weighted percentage using 4 y mobile examination center weights from NHANES 2003-2006

ZPIR, family poverty income ratio; low: 0-1.85; medium: >1.85-3.5; high: >3.5

";"‘Smoker” defined by serum cotinine concentration >10 pg/L

4Alcohol consumption: calculated as average daily number of “standard” drinks [(quantity x frequency) / 365.25]; 1 drink ~ 15 g ethanol

5“Supplement user” defined as participant who reported taking a dietary supplement within the past 30 d
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EBMI (kg/mz) definitions: underweight: <18.5; normal weight: 18.5->25; overweight: 25-<30; and obese: 230

Physical activity: calculated as total metabolic equivalent task (MET)-min/wk from self-reported leisure time physical activities
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